Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract We present panchromatic optical + near-infrared (NIR) + mid-infrared (MIR) observations of the intermediate-luminosity Type Iax supernova (SN Iax) 2024pxl and the extremely low-luminosity SN Iax 2024vjm. JWST observations provide unprecedented MIR spectroscopy of SN Iax, spanning from +11 to +42 day past maximum light. We detect forbidden emission lines in the MIR at these early times while the optical and NIR are dominated by permitted lines with an absorption component. Panchromatic spectra at early times can thus simultaneously show nebular and photospheric lines, probing both inner and outer layers of the ejecta. We identify spectral lines not seen before in SN Iax, including [Mgii] 4.76μm, [Mgii] 9.71μm, [Neii] 12.81μm, and isolated Oi2.76μm that traces unburned material. Forbidden emission lines of all species are centrally peaked with similar kinematic distributions, indicating that the ejecta are well mixed in both SN 2024pxl and SN 2024vjm, a hallmark of pure deflagration explosion models. Radiative transfer modeling of SN 2024pxl shows good agreement with a weak deflagration of a near-Chandrasekhar-mass white dwarf, but additional IR flux is needed to match the observations, potentially attributable to a surviving remnant. Similarly, we find SN 2024vjm is also best explained by a weak deflagration model, despite the large difference in luminosity between the two supernovae. Future modeling should push to even weaker explosions and include the contribution of a bound remnant. Our observations demonstrate the diagnostic power of panchromatic spectroscopy for unveiling explosion physics in thermonuclear supernovae.more » « lessFree, publicly-accessible full text available August 13, 2026
- 
            Abstract FRB 20220610A is a high-redshift fast radio burst (FRB) that has not been observed to repeat. Here, we present rest-frame UV and optical Hubble Space Telescope observations of the field of FRB 20220610A. The imaging reveals seven extended sources, one of which we identify as the most likely host galaxy with a spectroscopic redshift ofz= 1.017. We spectroscopically confirm three additional sources to be at the same redshift and identify the system as a compact galaxy group with possible signs of interaction among group members. We determine the host of FRB 20220610A to be a star-forming galaxy with a stellar mass of ≈109.7M⊙, mass-weighted age of ≈2.6 Gyr, and star formation rate (integrated over the last 100 Myr) of ≈1.7M⊙yr−1. These host properties are commensurate with the star-forming field galaxy population atz∼ 1 and trace their properties analogously to the population of low-zFRB hosts. Based on estimates of the total stellar mass of the galaxy group, we calculate a fiducial contribution to the observed dispersion measure from the intragroup medium of ≈90–182 pc cm−3(rest frame). This leaves a significant excess of pc cm−3(in the observer frame); further observation will be required to determine the origin of this excess. Given the low occurrence rates of galaxies in compact groups, the discovery of an FRB in one demonstrates a rare, novel environment in which FRBs can occur. As such groups may represent ongoing or future mergers that can trigger star formation, this supports a young stellar progenitor relative to star formation.more » « less
- 
            Abstract We present the localization and host galaxy of FRB 20190208A, a repeating source of fast radio bursts (FRBs) discovered using CHIME/FRB. As part of the Pinpointing REpeating ChIme Sources with EVN dishes repeater localization program on the European VLBI Network (EVN), we monitored FRB 20190208A for 65.6 hr at ∼1.4 GHz and detected a single burst, which led to its very long baseline interferometry localization with 260 mas uncertainty (2σ). Follow-up optical observations with the MMT Observatory (i≳ 25.7 mag (AB)) found no visible host at the FRB position. Subsequent deeper observations with the Gran Telescopio Canarias, however, revealed an extremely faint galaxy (r= 27.32 ± 0.16 mag), very likely (99.95%) associated with FRB 20190208A. Given the dispersion measure of the FRB (∼580 pc cm−3), even the most conservative redshift estimate ( ) implies that this is the lowest-luminosity FRB host to date (≲108L⊙), even less luminous than the dwarf host of FRB 20121102A. We investigate how localization precision and the depth of optical imaging affect host association and discuss the implications of such a low-luminosity dwarf galaxy. Unlike the other repeaters with low-luminosity hosts, FRB 20190208A has a modest Faraday rotation measure of a few tens of rad m−2, and EVN plus Very Large Array observations reveal no associated compact persistent radio source. We also monitored FRB 20190208A for 40.4 hr over 2 yr as part of the Extragalactic Coherent Light from Astrophysical Transients repeating FRB monitoring campaign on the Nançay Radio Telescope and detected one burst. Our results demonstrate that, in some cases, the robust association of an FRB with a host galaxy will require both high localization precision and deep optical follow-up.more » « lessFree, publicly-accessible full text available November 29, 2025
- 
            Tadpoles display preferences for different environments but the sensory modalities that govern these choices are not well understood. Here, we examined light preferences and associated sensory mechanisms of albino and wild-type Xenopus laevis tadpoles. We found that albino tadpoles spent more time in darker environments compared to the wild type, although they showed no differences in overall activity. This preference persisted when the tadpoles had their optic nerve severed or pineal glands removed, suggesting these sensory systems alone are not necessary for phototaxis. These experiments were conducted by an undergraduate laboratory course, highlighting how X. laevis tadpole behavior assays in a classroom setting can reveal new insights into animal behavior.more » « less
- 
            Many ant species are equipped with chemical defenses, although how these compounds impact nervous system function is unclear. Here, we examined the utility of Caenorhabditis elegans chemotaxis assays for investigating how ant chemical defense compounds are detected by heterospecific nervous systems. We found that C. elegans respond to extracts from the invasive Argentine Ant (Linepithema humile) and the osm-9 ion channel is required for this response. Divergent strains varied in their response to L. humile extracts, suggesting genetic variation underlying chemotactic responses. These experiments were conducted by an undergraduate laboratory course, highlighting how C. elegans chemotaxis assays in a classroom setting can provide genuine research experiences and reveal new insights into interspecies interactions.more » « less
- 
            Abstract We present the discovery of an as yet nonrepeating fast radio burst (FRB), FRB 20210117A, with the Australian Square Kilometre Array Pathfinder (ASKAP), as a part of the Commensal Real-time ASKAP Fast Transients Survey. The subarcsecond localization of the burst led to the identification of its host galaxy atz= 0.214(1). This redshift is much lower than what would be expected for a source dispersion measure (DM) of 729 pc cm−3, given typical contributions from the intergalactic medium and the host galaxy. Optical observations reveal the host to be a dwarf galaxy with little ongoing star formation—very different to the dwarf host galaxies of the known repeating FRBs 20121102A and 20190520B. We find an excess DM contribution from the host and attribute it to the FRB’s local environment. We do not find any radio emission from the FRB site or host galaxy. The low magnetized environment and the lack of a persistent radio source indicate that the FRB source is older than those found in other dwarf host galaxies, establishing the diversity of FRB sources in dwarf galaxy environments. We find our observations to be fully consistent with the “hypernebula” model, where the FRB is powered by an accretion jet from a hyperaccreting black hole. Finally, our high time resolution analysis reveals burst characteristics similar to those seen in repeating FRBs. We encourage follow-up observations of FRB 20210117A to establish any repeating nature.more » « less
- 
            Lele, Pushkar P (Ed.)The genetic and molecular basis of flagellar motility has been investigated for several decades, with innovative research strategies propelling advances at a steady pace. Furthermore, as the phenomenon is examined in diverse bacteria, new taxon-specific regulatory and structural features are being elucidated. Motility is also a straightforward bacterial phenotype that can allow undergraduate researchers to explore the palette of molecular genetic tools available to microbiologists. This study, driven primarily by undergraduate researchers, evaluated hundreds of flagellar motility mutants in the Gram-negative plant-associated bacteriumAgrobacterium fabrum. The nearly saturating screen implicates a total of 37 genes in flagellar biosynthesis, including genes of previously unknown function.more » « less
- 
            Abstract We present a comprehensive catalog of observations and stellar population properties for 23 highly secure host galaxies of fast radio bursts (FRBs). Our sample comprises 6 repeating FRBs and 17 apparent nonrepeaters. We present 82 new photometric and 8 new spectroscopic observations of these hosts. Using stellar population synthesis modeling and employing nonparametric star formation histories (SFHs), we find that FRB hosts have a median stellar mass of ≈109.9M⊙, mass-weighted age ≈5.1 Gyr, and ongoing star formation rate ≈1.3M⊙yr−1but span wide ranges in all properties. Classifying the hosts by degree of star formation, we find that 87% (20 of 23 hosts) are star-forming, two are transitioning, and one is quiescent. The majority trace the star-forming main sequence of galaxies, but at least three FRBs in our sample originate in less-active environments (two nonrepeaters and one repeater). Across all modeled properties, we find no statistically significant distinction between the hosts of repeaters and nonrepeaters. However, the hosts of repeating FRBs generally extend to lower stellar masses, and the hosts of nonrepeaters arise in more optically luminous galaxies. While four of the galaxies with the clearest and most prolonged rises in their SFHs all host repeating FRBs, demonstrating heightened star formation activity in the last ≲100 Myr, one nonrepeating host shows this SFH as well. Our results support progenitor models with short delay channels (i.e., magnetars formed via core-collapse supernova) for most FRBs, but the presence of some FRBs in less-active environments suggests a fraction form through more delayed channels.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available